
Modeling and Simulation of an IT Operations Command Center

Sanjit Mehta Veerendra K Rai Rahul Roy

Tata consultancy services Tata consultancy services Department of Management Information

54-B, Hadapsar Industrial Estate, 54-B, Hadapsar Industrial Estate, Systems, Indian Institute of Management

Pune, MH, 411013, India. Pune, MH, 411013, India. Calcutta, DH Road, Kolkata – 700104, India.

Sanjit.mehta@tcs.com veerendrak.rai@tcs.com rahul@iimcal.ac.in

Abstract

This paper models and simulates IT operations command center. It outlines the activities performed by the command center

and describes the model and modeling approach to simulate these activities. The paper appreciates the discrete and

continuous aspects of modeling the operations of the command center. The purpose of this model is to predict the behavior

of a command center engagement over time. The model is used to test and understand the effect of scenarios on the

engagement. This provides a good governance framework for the engagement as governance is key to success and failure

of a service engagement. Policies are defined and analyzed to mitigate impact of scenarios and/or achieve objectives thus

implementing a feedback loop monitoring system for command center operations management.

Keywords: IT operations command center, governance, service management, service engagement.

mailto:Sanjit.mehta@tcs.com
mailto:veerendrak.rai@tcs.com
mailto:rahul@iimcal.ac.in

1. INTRODUCTION

ITIL (2013) defines services as a means of delivering values to customers by facilitating outcomes customers want to

achieve without the ownership of specific costs and risks. Services are enabled through configuration items. A

configuration item could be any component required to deliver IT services. Examples of configuration items are – hardware,

software and process documentation. The goal for IT services is to fulfill business objectives, add value and contribute to

business. The hierarchy from IT infrastructure to business objectives is described briefly as follows.

 IT Infrastructure layer: contains IT infrastructure consisting of mainframes, servers, storage and networks etc.

 Configuration layer: this layer enables services and consists of a set of applications and corresponding

documentation.

 Services layer: contains the set of services, which when executed fulfill the business objectives they have been

designed for.

 Business objective layer: contains set of business objectives defined by the top management of the organization

and, which is subject to change with change in the business environment.

Any disruption in services is unwarranted and may have varying levels of negative business impact. To ensure provision

of services to best meet business objectives, formal controls termed as ‘Service level agreements’ (SLA) are defined and

assessed on a regular basis Goo et al (2009). Penalty is levied on deviation of services from agreed levels. Continuous and

consistent operation of configuration items is mandatory to provision of services within defined service level agreements.

ITIL (2013) terms these activities as IT operations and control, which are aimed at ensuring that the technology required

to deliver and support services is operating effectively and efficiently.

The monitoring and control loop is at the center of IT operations and control (ITIL, 2013). Services, activities and

configuration items may be monitored proactively or reactively. Any deviations from defined norms observed in service

operations may be resolved by the team or forwarded to responsible teams. Corrective actions (referred to as control) ensure

continuous operations of configuration items. A delay in implementing corrective actions may lead to disruption in services

and consequent business impact.

In this paper, we model an IT operations and control engagement, hereafter termed as a command centre. Command centre

provides a centralized hub for monitoring and control of configuration items which enable provision of services to meet

business objectives. Configuration items may be monitored and controlled remotely or non-remotely depending on context.

For example, certain tasks such as hardware upgrade, disk change would require physical access to configuration items

whereas applying software patches, running batch jobs may be executed remotely. Command centre teams refer to an

extensive repository of ‘Standard Operating Procedures’ (SOP), process documents, checklists and knowledge articles to

perform activities pertaining to monitoring and control. Events, incidents or corrective actions beyond the scope of a

command centre are forwarded to incident management, problem management, change management or other service

delivery processes.

For the model described in this paper, we have identified a list of tasks based on the activities performed within a command

centre engagement within our organization (Table 1). We describe the model and modeling approach to simulate these

activities. The purpose of this model is to predict behavior of a command center engagement over time. The model is used

to test and understand the effect of scenarios on the engagement. Policies are defined and analyzed using the model before

implementation to mitigate impact of scenarios and/or achieve objectives. System dynamics approach facilitates holistic

assessment of scenario impact and/or policy decisions. The model therefore provides a governance tool to execute a

command centre engagement in steady state, wherein it consistently meets desired SLA and continually improve its

performance to achieve business objectives.

Table 1.Command centre activities

Category Task Description

Alert Driven Application Alert Resolution Resolution of alerts generated by configuration items.

Batch Alert Resolution Resolution of failures, delays and dependencies in

batch processes.

Infrastructure Alert Resolution Resolution of events generated by infrastructure

elements.

Proactive & Hygiene Ready For Business Checks Proactive health check of configuration items before

start of business.

Database Maintenance Planning, analysis and scheduling maintenance

activities of databases.

Connectivity Checks Checks on application connection with systems and

external entities.

Planned Event

Management

Release deployment Deployment of releases and checks to be carried out

after deployments based on run books.

Planned Event Coordination Coordination of planned events and checks carried on

configuration items.

Outage Management Initiation, coordination, and documentation for post

mortem of major incidents due to system failure.

Service Delivery

Management

SLA and Metrics based

Governance

KPI and SLA definition to monitor and improve

services.

Section 2 outlines a meta-model for command centre operations which provides a logical abstraction of the model. Section

3 describes the modeling technique, modules and elements of the model. Section 4 shows results obtained from simulation

of the model for a particular scenario and policy configuration. Section 5 concludes the paper discusses further work

towards exploiting the model for business benefits.

2. Activities and Processes

2.1 The activities

Table 1 lists the activities, which are performed within a command centre engagement in our organization. Based on our

analysis of this engagement, practitioner’s experiences and domain knowledge we abstracted the activities into a singular

concept – ‘Ticket’. A ticket may be defined as a unit of work, which may be performed by one or more resources in

accordance with the processes defined for addressing a given type of ticket. We identified and modeled 5 types of tickets

(Refer – Table 1).

a. Alerts – These pertain to alert-driven tasks, i.e. resolution of alerts generated by configuration items.

b. Batch incidents – These include resolution of failures, delays and dependencies in batch jobs.

c. Scheduled tasks – These span all tasks which are scheduled and/or repetitive in nature. Example – planned checks,

maintenance activities, storage and backup.

d. Delegated tasks – These pertain to tasks which may be delegated to the command centre from other units (business

or IT). This ticket type also includes certain user incidents, service requests and access requests which do not require

extensive solutions and can be resolved using SOP and knowledge articles.

e. Release – This ticket type includes all release and deployment tasks and post-deployment checks.

It is to be noted that these ticket types may be modified based on context. Classification of ticket data along these types

(Ticket type distribution) for initialization of the model is based on definitions provided for each ticket type. In addition to

ticket type distribution, following data points pertaining to tickets are required for model initialization and simulation.

a. Ticket volumes – Volume distribution (Rate of arrival of tickets) for each type.

b. Ticket priority distribution – Priority distribution (Immediate, High, Medium, Low) for each ticket type. Ticket

priority is the product of its urgency and level of impact as given in Table 2.

c. Ticket effort distribution – Effort in person-hours required to address a particular ticket type.

d. Service level agreements – Defined levels of service for metrics such as resolution time, response time, and release

deployment time, etc. for each ticket type and priority combination. For example – time taken to resolve an immediate

priority alert must not exceed 10 minutes.

Table 2.Ticket prioritization

2.2 The process

The command center model consists of three core processes. Monitoring is a continuous process wherein the team is

required to monitor and detect any deviation from normal, referred to as ‘Event’ during operations of configuration items.

If discrepancies are detected, a ticket is raised and corrective actions implemented. Service desk responds to tickets

delegated by other units as well as other types of tickets. Response implies acknowledgement, data validation and routing

the ticket to responsible personnel. Resolution team implements corrective actions and/or executes required tasks based on

available SOP and knowledge articles for a given type of ticket.

The model also consists of a set of supporting processes. Knowledge management is a set of activities to create, document,

validate and add knowledge articles to repository. Knowledge database is repository of documentation such as SOP, process

documents, checklists and knowledge articles referred by the resolution team. The repository constantly evolves over time

as more knowledge is garnered with respect to configuration items, tickets, ticket types and their resolution. Processes are

improved through enhancements, task automation and virtualization. Process improvement reduces ticket volume, effort

required to respond to and resolve a ticket and saves costs in long-term. In this paper, we model reduced ticket volume as

a result of process improvements. Resource management models resource availability and utilization for processes

described above. Costs associated with processes are modeled through a set of cost parameters.

Tickets may be scheduled, raised or detected through monitoring. Apart from configuration items, batch jobs are monitored,

which result in batch incidents due to failures or delays. An event, detected through monitoring may be an alert or batch

incident. An event requires action within a certain timespan. If the event is not detected due to lack of resources or attention,

then it may (or may not, depending on the type of event) cause an incident post a certain period of time. An incident is a

disruption in service and it has far-reaching effects in terms of costs to restore the system. Apart from events (alerts and

batch incidents), other ticket types such as scheduled, delegated tasks and service requests are assigned to the team based

on a schedule, from other teams, or from end users.

Tickets are acknowledged by the service desk and sent to teams for resolution. Tickets are resolved with assistance from

knowledge base. A knowledge base or known error database (KEDB) is a repository of knowledge articles which consist

of instructions on steps to resolve a particular type of ticket. If an article is not present, the responsible team member may

either solve the ticket, if competent or escalate it to a higher level. After resolution of the ticket a knowledge article

pertaining to steps taken to resolve the ticket is created, validated and added to the repository. This constitutes a negative

U
rg

en
cy

Impact

 High Medium Low

High 1 (Immediate) 2 (High) 3 (Medium)

Medium 2 (High) 3 (Medium) 4 (Low)

Low 3 (Medium) 4 (Low) 4 (Low)

feedback loop, shown in figure 1, which increases the number of articles in knowledge repository over time. The rate of

increase in knowledge articles decrease over time. Process metrics are computed to capture process behavior. Metrics

include – Ticket response time, Ticket resolution time, Knowledge base effectiveness, Events detected and Events which

may cause potential incidents. These metrics are part of the model and are detailed in subsequent sections.

Figure 1. Knowledge base effectiveness loop

3. SYSTEM DYNAMICS MODELING

In addition to understanding system dynamics modelling and simulation approach to appreciate the behavior of complex

systems over time given in Forrester (1969) and Sterman (2001) we also need to apprise ourselves with the latest state-of-

art tools (Vensim, 2013 and Stella, 2013). A system dynamics model could be logically divided into sectors, wherein each

sector represents a part of the model. A concept central to our model is ‘Arrays’. Arrays in system dynamics allow a

particular variable to represent multiple concepts. In the context of our model, ‘Ticket type’ is an array. It represents –

‘Alerts’, ‘Batch incidents’, ‘Scheduled tasks’ and ‘Delegated tasks’. Arrays allow a user to disaggregate a particular

variable in to less abstract concepts.

3.1 Purpose and scope of system dynamics modelling

IT service operations and control has been traditionally modelled as discrete-event based simulation. SYMIAN is a

discrete-event simulation tool for incident management Bartolini et al (2008). It uses a queuing system to model incidents.

Time to resolve an incident is computed based on time spent per incident as well as waiting time per ticket based on

employee’s availability. Assuncao et al (2012) use simulation to evaluate the impact of incident dispatching policies for

incident management. As described in section 2, incidents, as tickets, are classified along type and priority. Policies are

defined to select and resolve incidents from the queue. An example policy would be to solve incidents of immediate priority

as and when they arrive, while de-prioritizing the incident-at-hand if it is of lesser priority. Since SLA for immediate

priority incidents are more stringent, therefore prioritization would improve compliance. This and other policies are tested

through simulation to evaluate their impact in terms of effort required per ticket and SLA compliance. Lee et al (2007)

developed a system dynamics model for incident and problem management. Problem management is a service delivery

process for root cause analysis and resolution of errors, which cause incidents. The purpose of this paper is to identify

variables in the system which would cause significant fluctuations in overall system behavior.

Based on our literature review and domain knowledge, we established a set of feedback loops for command center as

service delivery and supporting processes are inter-twined through cause and effect. These feedback loops and process

inter-relations are not captured by available literature on discrete-event IT service operations simulation. We use system

dynamics to capture these relationships and complex feedback structure. The available literature on system dynamics

modelling of IT service operations is sparse and abstract in nature. It does not absorb requisite variety, which limits its

application in a real-world engagement. To improve the accuracy of our model in terms of structure as well as behavior,

we uniquely use system dynamics as the combination of discrete and continuous simulation tool. We exploit capabilities

of state-of-art system dynamics simulation packages (Vensim and Stella) to accommodate variety. Since, the lifecycle span

of a ticket is expressed in minutes therefore we use a low time-step (1 minute) for simulation. Higher time-steps would

generate inaccurate behavior. For example, if the resolution time for an alert is 10 minutes and time-step is 30 minutes, the

system would use resolution time as 30 minutes. This would consequently affect SLA compliance, total effort spent,

resource utilization and costs. Apart from modelling the feedback structure, we use system dynamics modelling to enable

functionalities for what-if analysis and policy design. We developed a comprehensive model to accommodate a large set

of scenarios and policies, which users require to govern a command center engagement thereby extending its applicability.

In addition to exploiting power of latest system dynamics simulation tools we also need to sensitize ourselves to the domain

of IT outsourcing, production support and production management. Rai (2013) constructs a viable framework for

production support based on Viable System Model (VSM) of Stafford Beer (Beer, 1985); Espejo and Harnden (1976). Rai

(2012) outlines a system of requisite knowledge for service engagement transformation. Rai et al (2010) discuss framework

for portfolio management at Offshore Development Center (ODC). Rai and Mehta (2012) outline a systems thinking based

methodology for assessing the As-Is state of a service engagement so that policy intervention could be made to ensure

service engagement reaches the desired (To-Be) state. Rai and Swaminathan (2010) describe a system of systems approach

to construct a framework for program management.

The next section describes the model in detail as a set of inter-related processes which constitute the overall feedback

structure.

3.2 Command centre model

This section provides detailed description of the command centre model. We have divided this section into multiple

subsections each representing a sector in the overall model. The table below provides an overview of all sectors.

 Table 3.Command centre model sectors

Sector name Sector description

Control data This sector is a container for all data parameters to initialize the model.

Ticket generation and

response

This sector models processes required to generate and respond to tickets. Tickets are

generated using input data. Ticket response requires associates to acknowledge tickets

and assign them for resolution.

Ticket resolution This sector models the ticket resolution process. Tickets are resolved by associates (or

escalated) with or without assistance of a knowledge base.

Release management This sector models the release management process. Since a release is different from

tickets, it has been modeled separately.

Monitoring and event

management

This sector models monitoring for a set of configuration items. Configuration items are

monitored to detect and resolve any abnormal behavior (event). An event may pertain

to an alert or a batch incident which is resolved through the resolution process.

Knowledge management This sector models improvement in knowledge base through creation and validation of

knowledge articles.

Resource management This sector models the availability and utilization of resources for various processes.

The model consists of a set of arrays. The purpose of these arrays is to represent multiple concepts within a particular

variable. Arrays may be construed as classes of which array elements are instances. This enables disaggregation of variables

into less abstract concepts. For the command centre model, we described a set of arrays to represent ticket types, ticket

priorities, ticket resolution type (with or without assistance of knowledge base) and ticket occurrence frequencies. Any

variable, depending upon its type and usage may have zero or more combinations of elements of each array. Following

table lists the arrays as well as their elements defined in the model.

Table 4.Arrays in command centre model

Array: Ticket type

Array elements (Refer Section 2.1)

Alert, Batch, Scheduled and Delegated.

Array: Ticket priority

Array elements (Refer Table 2)

Immediate, High, Medium and Low.

Array: Ticket resolution type

Array element Element description

KEDB Tickets resolved using knowledge base.

Non KEDB Tickets resolved without using knowledge base.

Array: Ticket occurrence frequency

Array element Element description

User defined classification of frequencies of occurrence for tickets into 5 classes – ‘Very high’, ‘High’,

‘Frequent’, ‘Low’, ‘Very low’

Unknown Ticket occurrence frequency is unknown

As shown in table 4, four arrays have been defined. Each array is composed of array elements which allow a variable to

represent multiple concepts. For example, the average effort required to resolve a ticket may be different for alerts, batch

incidents, scheduled tasks and delegated tasks. A variable – ‘Average effort required to resolve tickets’ therefore may be

initialized to contain different values for different ticket types. Array elements may also be combined to represent multiple

concepts. For example, service level agreements are defined on the combination of ticket type and priority. Therefore, a

variable – ‘Response time SLA’ would contain 16 (or less, if all combinations are not used) combinations of ticket type

and priority. The SLA for an immediate priority alert may be different from a high priority alert or an immediate priority

batch incident. This argument is also extended to equations, wherein different equations may be defined for different

combinations of array elements within a particular variable.

Ticket type, priority and resolution type arrays are self-explanatory. Ticket occurrence frequency array classifies tickets

into different categories based on number of occurrences of a similar ticket in a given period of time. The period of time is

user defined. It may be a day, a week or a month. We defined five classifications – ‘Very high’, ‘High’, ‘Medium’, ‘Low’

and ‘Very low’ to classify tickets based on number of occurrences. A sixth category, ‘Unknown’ is also defined to

accommodate tickets for which occurrence frequency is unknown (or not calculated).

3.2.1 Control data

This sector comprises of data parameters required to initialize the model for simulation. These data parameters are

organized as shown in table 5. The table is divided into 3 columns – Parameter, Description and Arrays. Parameter column

outlines the parameters in the model. Parameters are grouped together in the column as concepts and may not necessarily

have the same names in the model. For example, the parameter ‘Ticket response time’ corresponds to four parameters in

the model – ‘Average ticket response time [Alert]’, ‘Average ticket response time [Batch]’, ‘Average ticket response time

[Scheduled]’ and ‘Average ticket response time [Delegated]’. The arrays column outlines the arrays across which the

parameter may be further sub-divided in the model. For example, priority distribution corresponds to – ‘Priority distribution

[Immediate, Alert]’, ‘Priority distribution [Immediate, Batch]’ and other possible combinations of array elements for

priority and type arrays.

Table 5.Data parameters in control data sector

Data parameters

Parameter Description Arrays

Priority

distribution

Percentage distribution of each ticket type across all priorities. Priority,

Type

Event

distribution

Percentage distribution of events into alerts and batch incidents. Type (Alert

and Batch)

Ticket type

distribution

Volume for all ticket types averaged out for all hours within a week. A graph of

ticket volumes for all ticket types is plotted against time of week (0 to 167 hours).

Type

Response time Time required responding to tickets for each ticket type. Type

Resolution

time

Time to resolve a ticket with and without assistance of knowledge base Type,

Resolution

Service level agreements

Parameter Description Arrays

Response time SLA for response time defined across all ticket types and priorities. Priority, Type

Resolution time SLA for resolution time defined across all ticket types and priorities. Priority, Type

Resource management

Parameter Description Arrays

Resource distribution Weekly schedule for resources in service desk and resolution team. None

Cost per resource Cost per hour for resources in service desk and resolution teams. None

Resolution resources

used for ticket response

Percentage of resources in the resolution team used for ticket response. None

Knowledge management

Parameter Description Arrays

Effort spent Percentage of total effort of resolution team spent on creating knowledge

articles.

None

Required effort Effort required (in person-hour) to create and validate knowledge articles. None

Utility Extent to which a knowledge article reduces effort required to resolve a ticket. None

Ticket-to-

problem ratio

Number of tickets arising due to a particular problem (or root cause). None

Release management

Parameter Description Arrays

Release schedule Schedule of releases for the period of simulation. None

Effort required per release Total effort (in person-hour) required for a release. None

Target release time SLA for time required to deploy a release. None

Event management

Parameter Description Arrays

Event generation schedule Average volume of events occurring at a given point of time in a

week.

None

Resources required per event Number of resources required to monitor and detect an event. None

Events to incidents Percentage of non-intercepted events missed to create potential

incidents.

None

Events to tickets Percentage of events which are converted to tickets. None

Cost per incident Incident management and service disruption cost. None

Scenario modelling

Parameter Description Arrays

Change in ticket distribution Percentage change in ticket volume distribution (increase or

decrease).

Type

Change in resource

distribution

Change in resource distribution in service desk or resolution team. None

Process improvement

Parameter Description Arrays

Frequency distribution Distribution and classification of tickets into frequency-based classes. Type,

Frequency

Frequency band The actual frequency of occurrence for a specific classification. Type,

Frequency

Process improvement

schedule

Schedule for process improvements over the duration of simulation. Type,

Frequency

3.2.2 Ticket generation and response

Ticket generation is divided into two sections – a) Tickets generated directly from input distribution, b) Tickets generated

from events. Scheduled tasks and delegated tasks are generated from input distribution provided by the user. The input

distribution is a plot of average ticket volume against hours in a week. It is our contention that ticket volume pattern is

repetitive over time. The duration of repetition is a week (168 hours). Configuration items generate tickets and their support

schedule is defined over a week such as, ‘24x7’ (24 hours, 7 days), ‘16x7’ (16 hours, 7 days) and ‘8x5’ (8 hours, 5 days).

Therefore, we input distribution as average ticket volume at a given hour across all weeks. The underlying assumption here

is the number of configuration items remains constant. Else, percentage change in ticket volume is to be provided as input.

Equation 4 computes number of tickets generated per unit time. The equation applies only to ticket types – Scheduled and

Delegated.

Tickets generated per unit time [Type] = Max (Ticket distribution [Type] (Modulus (Time in hours, 168)) * (1+Percentage

change in tickets generated [Type]) – Reduction in number of tickets [Type], 0) (4)

As shown, tickets generated per unit time is a combination of 3 factors:

 Average number of tickets at a given point in time within a week is input as a table function which returns the

corresponding ticket volume for the input hour. For a given point in time, the modulus function returns the

corresponding hour-of-week, which is provided as input to the table function.

 Percentage change in tickets generated, as input by user at the start of simulation or during interactive simulation. It is

used to model scenarios such as addition / discontinuation / change of configuration items.

 Reduction in number of tickets is a result of process improvements. One purpose of process improvement, which is

addressed in our model, is to reduce repeated occurrences of similar tickets which reduces the number of tickets

generated per unit time (Section 3.3.7).

Alerts and batch incidents are generated from events, as discussed in section – 3.3.3. They are consolidated in a single

variable – ‘Tickets generated per unit time’. Tickets generated are assigned priority based on priority distribution as.

Prioritized tickets [Priority, Type] = Tickets generated per unit time [Type]*Priority distribution [Priority, Type] (5)

Prioritized tickets accumulate as ‘Tickets arrived’. Tickets are assigned to associates for response and acknowledgement.

The underlying assumption is that an associate can address one ticket at a time. In an ideal scenario, all tickets arrived

would be assigned to associates for response. However, it is constrained by number of associates available for response. A

backlog is created if the number of tickets arriving are greater than the effort available to acknowledge them. An

accumulator ‘Tickets response pipeline’ forms a buffer for tickets in the response process. This creates a lock-in of certain

associates (equal to the number of tickets) for duration of response. Tickets are responded post a delay equal to ‘Average

ticket response time’ (Figure 2).

Figure 2.Ticket response causal diagram

Ticket response effort’ computes the actual effort expended for response of tickets. Since, ‘Ticket response effort’ is

computed at every time step, it essentially represents the number of tickets responded at a given point in time. At this stage

of the model, tickets are classified into type and priority. Herein, the model defines the following rule, as shown in figure

3 for addressing tickets, either for response or resolution (Section 3.3.4).

Figure 3.Ticket allocation rule (for response or resolution)

Ticket response effort [Priority, Type] = Minimum (Tickets arrived [Priority, Type], Effort available for ticket response)

 (6)

‘Effort available for ticket response’ for a given priority and type is computed in equation 7.

Effort available for ticket response [Priority, Type] = Initial effort available – Sum (Effort spent for ticket response for

prior tickets in queue) (7)

Tickets are queued as they arrive and create a backlog if they are not acknowledged due to lack of effort. Average time

spent by a ticket waiting in the queue is computed as,

Average waiting time[Priority, Type] = ∫
Maximum (Tickets arrived [Priority, Type] -
Tickets acknowledged [Priority, Type], 0)

time=t

time=0

÷

∫ Tickets arrived [Priority, Type]
time=t

time=0
 (8)

Prioritized tickets

Ticket arrival rate

+

Tickets arrived

+

Tickets

assignment rate

-

Ticket response

effort

++

Effort available for

ticket response

+

Tickets response

pipeline

+

Tickets responded
+

Average ticket

response time

-

Ticket backlog

+

-

Waiting time per

ticket
+ Ticket response time

+

+

At any given time step, the number of tickets in queue are equal to the positive difference between tickets arrived and

acknowledged. Vice-versa, it can also be interpreted as ‘n’ tickets waiting for a time step, where ‘n’ is the number of tickets

in queue at that time step. The cumulative sum of number of tickets at each time step (numerator) is equivalent to cumulative

waiting time for all tickets. Average waiting time, is therefore, a ratio of the cumulative waiting time to cumulative number

of tickets generated till that time. The overall response time per ticket is defined as:

Overall response time [Priority, Type] = Average response time [Type] + Waiting time [Priority, Type] (9)

Here, average response time is provided as input.

Compliance to service level agreements is computed based on comparison between overall response time and SLA response

time as defined in equation 11. It is to be noted that we use the ‘If’ function as defined in equation 10.

If (Condition, Value if true, Value if false) (10)

Response SLA compliance [Priority, Type] =

 ∫

If (Overall response time [Priority, Type] <
SLA response time [Priority, Type],

Number of tickets responded at time instance, 0)

time=t

time=0
 ÷ ∫ Tickets arrived [Priority, Type]

time=t

time= 0
 (11)

For every time step, the number of tickets responded within SLA is accumulated. Percentage compliance is the ratio of

cumulative tickets responded within SLA to total number of tickets generated till that time.

3.2.3 Monitoring and event management

In addition to scheduled and delegated tasks, events are generated by configuration items. These events may be

informational (such as task completion notifications), warnings (such as memory usage warning) or exceptions (errors in

configuration items). Monitoring is required to detect and respond to events. If not acknowledged and resolved, an event

may cause a potential incident. Events are classified into alerts and batch incidents. Events are generated randomly from a

weekly distribution provided as input. Similar to tickets, event generation is defined in equation 12. Equation 12 is

applicable for ticket types ‘Alerts’ and ‘Batch incidents’.

Events generated per unit time [Type] = Max (Event distribution (Mod (Time in hours, 168)) * (1 + Percentage change in

events generated) * Event classification [Type] – Reduction in number of tickets [Type], 0) (12)

Here, ‘Percentage change in events generated’ is part of a scenario which user may configure at start of simulation or

during interactive simulation. Event classification is the distribution of events in to alerts and batch incidents. Events (alerts

and batch incidents) may also be reduced through process improvements (as described in section – 3.3.7). Events generated

are logged and intercepted by resources (employees). Effort available for monitoring is computed as described in section

– ‘Resource management’. The number of events intercepted is computed as:

Events intercepted [Type] = Minimum (Effort available for monitoring [Type] ÷ Resources required per event, Events

logged [Type]) (13)

Here, ‘Resources required per event’ is the inverse of the number of events that can be intercepted by an employee per unit

time. Events not intercepted are queued and would cause potential incidents if not acknowledged within threshold time.

Event queue time [Type] = ∫ Maximum (Events generated [Type] - Events intercepted [Type], 0) ÷
time=t

time=0

 ∫ Events generated [Type]
time=t

time=0
 (14)

If the queue time is greater than threshold time, then the existing queue is transferred to the accumulator variable –

‘Potential incidents’. Events registered as ‘Potential incidents’ are removed from queue.

Potential incidents [Type] = ∫ If (
 Event queue time [Type] > Threshold time,

Events in queue [Type],

0

)
time=t

time=0
 (15)

Potential incidents have a cost attached in terms of incident management, problem management and service disruption

costs. These costs are averted through monitoring as shown in causal diagram (figure 4).

Figure 4.Monitoring and event management causal diagram

The negative feedback loop is a decision loop, wherein ‘Effort available for monitoring’ is a lever which would reduce

overall costs due to potential incidents. A fraction of events are converted to tickets classified into ‘Alerts’ and ‘Batch

incidents’. Classification is based on a distribution provided as input by the user. Tickets generated go through the ticket

response and resolution process as described in section 3.3.2 and 3.3.4 respectively.

3.2.4 Ticket resolution

Tickets responded are queued for resolution. As stated earlier, the resolution team may be same or different from the

response team. In the context of command center, tickets are generally responded and resolved by the same team. Figure 8

shows a causal diagram for the ticket resolution process. Responded tickets are queued as – ‘Tickets to be resolved’. Tickets

may be either resolved with or without referencing the KEDB. ‘Number of tickets resolved using KEDB’ is determined by

the ‘Number of articles present in the KEDB’, ‘Ticket-to-problem ratio’ and ‘Ticket occurrence frequency’ (per unit time)

as.

Tickets resolved using KEDB [Type] = Number of knowledge articles [Type] * Ticket to problem ratio * Ticket occurrence

frequency per unit time * Average utility of KEDB (16)

The resolution team may not be able to resolve all tickets without using KEDB and therefore a fraction (0 to 1) of tickets

not resolvable using KEDB are escalated to a higher level. It is to be noted that ‘Average time to resolve a ticket using

KEDB’, ‘Average time to resolve a ticket without using KEDB’ (No escalation) and ‘Average time to resolve a ticket

through escalation’ are different in values based on context. Also, ‘Average time to resolve a ticket using KEDB’ would

always be less than resolution without using KEDB. Therefore, an effective KEDB reduces ticket resolution time. KEDB

effectiveness is computed as a ratio of the number of tickets resolved using KEDB to total number of tickets.

Effort available for resolution of tickets is computed at every time step. Tickets are allocated for resolution based on priority

and type. The rate at which tickets are resolved is moderated by two factors – ‘Time to resolve the tickets’ and ‘Effort

available to resolve tickets’ (Figure 5). KEDB is considered a factor in determining time to resolve tickets.

Events logged

Events intercepted

+

Effort available for

monitoring

+

Events in queue

(not intercepted)

+

-

Potential incidents

+

Potential

incident costs

+

+

Figure 5.Ticket resolution causal diagram

Tickets not resolved add to backlog and increase average waiting time for tickets to be resolved. Waiting time for tickets

is determined similarly.

Average waiting time for ticket resolution[Priority, Type] =

∫
Maximum (Tickets to be resolved [Priority, Type]-

Tickets resolved [Priority, Type], 0)
time=t

time=0
÷ ∫ Tickets responded [Priority, Type]

time=t

time=0
 (17)

Overall resolution time is the sum of waiting time and resolution time, which is further a weighted sum of resolution type

fractions (Using KEDB, Non KEDB, and Escalation) multiplied by respective resolution time.

Ticket resolution time [Priority, Type] = Waiting time [Priority, Type] + Fraction of tickets resolved using KEDB *

Average ticket resolution time using KEDB + Fraction of tickets resolved without using KEDB * Average ticket resolution

time without using KEDB + Fraction of tickets escalated * Average ticket resolution time through escalation (18)

Ticket resolution time for ticket types and priorities are compared to respective SLAs to compute SLA compliance.

3.2.5 Release management

Release deployment and checks are a part of command center activities. Releases are generated based on a schedule (as

input by the user). Releases are assigned to employees. It is to be noted that more than one employee is dedicated to handle

release deployments.

Releases assigned = Minimum (Releases arrived, Effort available for release management ÷ Resources required per

release) (19)

Resources are locked-in for the time it takes to deploy and check a release. In event of lack of resources, releases are queued

and waiting time is computed. Release deployment time is computed as the sum of time for release deployment and waiting

time. SLA compliance is computed based on the comparison between release deployment time and release deployment

SLA.

3.2.6 Knowledge management

Effort available for

ticket resolution

Tickets to be

resolved

Number of knowledge

articles in KEDB

Tickets resolved

using KEDB

+

Tickets not
resolvable using

KEDB

+

-

Percentage non KEDB

tickets escalated

Tickets resolved

through escalation

+

Knowledge

articles created

+

+

+

+

Tickets resolved

without using KEDB

+
-

+

+

+

Average

resolution

time using

KEDB

Average resolution time

without using KEDB

Average

resolution

time through

escalation

Net ticket

resolution time

+-

+

Ticket backlog

+

+

Knowledge management module captures process of creation and validation of knowledge articles. Tickets resolved

without using KEDB are analyzed, documented and validated for future reference (as knowledge articles). In actual terms

these articles correspond to known errors, standard operating procedures and process documentation. One or more articles

may be referred for resolving a particular ticket. Also, one article may be linked to one or more tickets, depending on ticket-

to-problem ratio. Figure 6 shows the causal diagram for knowledge management process.

Figure 6. Knowledge management process

Knowledge articles are documented by team members. The effort provided is regulated by the user through a parameter –

‘Percentage of total effort spent on knowledge management’.

Knowledge articles created per unit time = Maximum (Tickets resolved without using KEDB – (knowledge articles created

but not validated + knowledge articles in pipeline) * Ticket occurrence frequency per unit time * Ticket to problem ratio,

0) ÷ (Ticket to problem ratio * (1 + Ticket occurrence frequency per unit time)) (20)

For every ticket resolved without using KEDB, number of knowledge article created would be,

1 ÷ ((Ticket to problem ratio) * (1 + Ticket occurrence frequency per unit time) (21)

The expression computes the probability of a ticket corresponding to a unique knowledge article. For example, if a

knowledge article is applicable for 5 tickets on average, then a set of 10 tickets would on correspond to 2 unique knowledge

articles. Also, each ticket has duplicates due to repeated occurrences, which is factored through the parameter – ‘Ticket

occurrence frequency per unit time’. Since pipeline and created articles do not reflect in the repository, therefore they are

subtracted to add only new articles to pipeline. Knowledge articles in the pipeline are documented based on effort available

at each time step. Knowledge articles are then validated and added to the repository after a validation delay, which is the

time taken by stakeholders to validate a knowledge article.

3.2.7 Process improvement

Process improvements are enhancements which reduce number of tickets or effort required to respond to and resolve a

ticket. In this paper, we model the effect of process improvement towards reducing repeated occurrences of tickets.

Frequency of occurrence is the number of times a similar ticket recurs per unit time. Reduction in frequency of occurrence

translates to elimination of tickets. An example of process improvement is elimination of false alarms for alerts and batch

incidents. It reduces number of tickets arriving and effort spent leading to cost savings and enhanced SLA compliance

levels. To model process improvements, we assign frequency bands for all ticket types (Column) and frequency sets (Row)

as given in table 6.

Knowledge

articles created

Number of tickets
resolved without using

KEDB

+

Effort available to
create knowledge

articles

-

Knowledge

articles validated

+

Percentage of total effort
spent on knowledge

management

+

Time required to
document knowledge

article

Time required to
validate knowledge

articles

Knowledge articles

repository

+

-

Table 6. Frequency band template (Example for alert and batch incidents)

 Very high High Frequent Low Very low

Alert 45, 50, 55 35, 40, 45 25, 30, 35 15, 20, 25 5, 10, 15

Batch incidents 25, 15, 12 12,9, 8 8,7, 6 6,5,3 3,2,1

Each cell contains a triplet – {Minimum, Average, and Maximum} which constitutes a band for a particular ticket type and

frequency set. Frequency is expressed as a number of similar ticket occurs per month. An initial distribution is provided

for all ticket types and frequency sets (including unknown).

Table 7.Frequency distribution (Example for alert and batch incidents)

 Very high High Frequent Low Very low Unknown

Alert 5% 20% 30% 20% 5% 20%

Batch incidents 15% 25% 35% 20% 5% 0%

A parameter – ‘Percentage reduction in frequency’ provides the extent to which recurrence is reduced when process

improvement initiatives are put in place, for all ticket types and frequency sets. Example – The frequency of a batch incident

with very high frequency initially can be reduced by 80% or the frequency of a batch incident with low frequency cannot

be reduced further. A process improvement schedule (policy decision) is provided as input. The schedule comprises of

improvement levels for each frequency set for a specified time interval (monthly, quarterly). Figure 7 shows the causal

diagram for process improvement.

Figure 7. Process improvement causal diagram

The causal diagram above shows process improvement for high frequency set for any ticket type. Similar diagram and set

of equations described below are applicable for all frequency sets and ticket types. Ticket arrival rate is computed from

user inputs. ‘Unique tickets’ is a set of tickets across ticket types and frequencies without recurrences. At the start of

simulation, the number of known unique tickets is zero. The number of tickets which would occur at each time step due to

repetition is computed using known unique tickets as.

Number of repeat tickets [Type, Frequency] = Number of unique tickets [Type, Frequency] * Frequency of occurrence per

unit time [Type, Frequency] (22)

New tickets are a difference of tickets arrived and tickets repeated. These are added to the number of unique tickets, which

is an accumulation variable.

Ticket arrival rate

Number of unique
tickets (High
frequency)

Number of repeat
tickets (High
frequency)

+

Number of non-repeat

tickets (High frequency)
+

-

+

Process improvement

(High frequency)

Number of tickets

reduced

+

+

Percentage reduction in
frequency of occurrence

(High frequency)

+

-

Number of unique

tickets (Low frequency

+

Ticket occurrence

frequency

-
+

-

Number of unique tickets = ∫
((Number of non-repeat tickets [Type, Frequency] ÷

(1 + Frequency of occurrence per unit time [Type, Frequency])

time = t

time = 0

)

+ Change in frequency distribution [Type, Frequency]) (23)

Non-repeated tickets are divided by the occurrence frequency to arrive at the corresponding number of unique tickets. We

model process improvement as the percentage of unique tickets, which are affected by the improvement leading to a

reduction in its frequency of occurrence. At every improvement cycle, the model executes following steps to re-evaluate

frequency distribution. Through re-evaluation, the model reduces the proportion of high frequency tickets while increasing

the proportion of low frequency tickets. We describe re-evaluation process below.

a. Compute resulting frequencies for each frequency set as:

Resulting frequency [Type, Frequency] = Frequency average*(1 – Percentage reduction in frequency of occurrence

[Type, Frequency]) (24)

b. For each frequency set (f), if the resulting frequency does not belong in its range, then compute the number of tickets

to be re-assigned.

Change in frequency distribution (f) = -1 * Number of unique tickets (f) * process improvement level (f) (25)

Search for frequency set (f’) to which resulting frequency belongs and re-compute distribution for f’ as,

Change in frequency distribution (f’) = Number of unique ticket (f) * process improvement level (f) (26)

c. Change in frequency distribution is added to the number of unique tickets as shown in equation 23. It is to be noted

that the frequency band for f’ will always be less than or equal to f.

Reduction in number of tickets per unit time is the negative sum of change in distribution for each frequency set multiplied

by the average frequency for the set across all frequency sets (Equation 27). Reduction in occurrence frequency reduces

number of tickets generated per unit time.

Reduction in number of tickets per unit time [Type] = -1 * ∑ (Change in frequency distribution [Frequency]) * Average

frequency per unit time [Frequency]) (27)

Ticket occurrence frequency per unit time is the weighted average frequency of all frequency sets, weighted by the number

of unique tickets (Equation 27).

Ticket occurrence frequency per unit time [Type] = (∑ (Average frequency per unit time [Frequency]) * (Number of unique

tickets [Type, Frequency])) ÷ (Total number of unique tickets for each type) (28)

3.2.8 Resource management

The purpose of this module is to allocate resources to activities described above and keep track of assigned resource values

(Figure 8).

Figure 8. Resource management causal diagram

At a given point in time, net resources in team is computed as.

Net resources = Maximum (Resources in team – Resources being used for ticket response – Resources being used for ticket

resolution – Resources being used for releases-Resources being used for knowledge articles, 0) (29)

Net resources are assigned to activities in the order – ‘Ticket response’, ‘Ticket resolution’, ‘Release management’,

‘Knowledge management’, ‘Monitoring and event management’. Resources may be unavailable for one or more activities

which would lead to backlogs and potential incidents in case of monitoring. It is to be noted that effort spent in a particular

activity is also a function of corresponding volume of work within the activity such as tickets arrived for response; tickets

to be resolved; releases arrived; and knowledge articles in pipeline (Not shown in figure 11).

4. MODEL SIMULATION

4.1 Initialization

Initialization of a system dynamics model implies providing input for all data parameters and table functions. We initialized

the command centre model using data generated from a command centre engagement within our organization. We extracted

values for the following data points.

Table 8. Data points extracted from given data

Data parameters

Ticket type distribution, Event distribution, Priority distribution, Resolution time and Response time.

Service level agreements

Resolution time and Response time.

Resource management

Resource distribution. Costs per resource assumed.

Knowledge management

Initial effectiveness of knowledge base.

Release management

Release schedule and Effort required per release.

Event management

Resources in team

Resource distribution

(table function)

Dedicated resources

for ticket response

Service desk resource
distribution (table

function)

Net resources

in team Effort available for

ticket response

+
+

Ticket response

effort+

Effort available for

ticket resolution

+ -

Effort available for

release management

+

Ticket resolution

effort

-

Ticket response

pipeline

+

-

Ticket resolution

pipeline

-

+

Releases deployed

+

+

Effort available to
create knowledge

articles

+

-

-

Knowledge articles

in pipeline +

-

Percentage of total effort
spent in knowledge

management

+

Effort available for

monitoring

+
-

Event generation schedule. Other parameters – Resources required per event and cost per incident are assumed.

Process improvement

Frequency distribution (Batch incidents) and Percentage reduction in frequency (Batch incidents)

4.2 Policy Configuration

Model configuration implies providing values to parameters which represent scenario and policy related parameters (not

derivable from data). We simulated two runs with conditions as shown below.

Table 9.Run parameters

 Base run Scenario & Policy run

Scenario parameters

Initial number of knowledge articles 25, 50, 35, 45 5, 10, 7, 9

Threshold time to intercept events 15 Minutes 10 Minutes

Increase in events over time 20% 40%

Policy parameters

Additional resources in team 0 1

Process improvement 0 Batch incidents – 100%,100%,100%, 75%, 0

Process improvement interval NA 15 days

Percentage resources in KM 25% 100%

Base conditions correspond to parameter values derived from data. We perform what-if analysis by defining scenarios

(changes in environment) which would affect the model. We considered 3 scenario parameters.

a. Initial number of knowledge articles represents the effectiveness of KEDB at start of engagement. We reduce it by

75% for scenario and policy run.

b. Threshold time to intercept events represents the lag between event generation and event manifesting as a potential

incident. If intercepted within lag, an event would be logged and resolved. Else, it would incur incident management

and service disruption costs.

c. Increase in events over time – We observed from data, that events increased by 20% over 3 months’ time. This is

provided as base value. We set scenario value at 40%.

Impact due to scenarios is mitigated by policies. We configure following policy parameters in the model.

a. Addition of resources in team.

b. Percentage spent on creating knowledge articles.

c. Process improvements to reduce ticket volume.

Table 9 outlines the configuration for scenarios and policies. For parameter – ‘Initial number of knowledge articles’ the

values are in ticket type sequence – ‘Alert’, ‘Batch’, ‘Scheduled’ and ‘Delegated’. For parameter – ‘Process improvement’

it implies that 100% of ‘Batch incidents’ are analyzed for possible reduction in frequency of occurrence. Section 4.3 shows

simulation results and discussion.

4.3 Simulation results

We simulated 3 runs for the model for 3 months based on given configuration (Table 9). The runs are as follows

a. Base – Base values (derived from data).

b. Scenario (Only scenario impact) – Values for scenario parameters are changed using configuration table. Values for

policy and other parameters remain unchanged.

c. Policy – Values for policy parameters are changed using configuration table to mitigate scenario impact.

We display the simulation results through time series plots for metrics critical to the engagement. It is to be noted that

simulation time-step is 1 minute (shown in x-axis of graphs). Please refer to legend below for graphs.

Figure 9 shows averaged time to resolve tickets (in hours). Time to resolve a ticket is impacted negatively (increases) in

scenario conditions. Policy implementation reduces impact and time decreases to base conditions by end of simulation.

Figure 9. Ticket resolution time series

One factor attributing to reduction in resolution time is investment in knowledge management. Number of knowledge

articles in repository increases the percentage of tickets being resolved using KEDB which reduces overall resolution time

(Figure 13). In the base run, the initial effectiveness of KEDB is set at 98% from data. Percentage of tickets resolved using

KEDB culminates at 90% in scenario run and 95% in policy run, at higher rate.

Figure 10. Fraction of tickets resolved using knowledge base.

The other factor contributing to resolution time is waiting time per ticket, which is lower in policy run due to additional

resources (Figure 11) and reduction in effort through process improvements.

Figure 11. Waiting time per ticket (minute)

Resolution time affects service level compliance. Service level compliance increases as resolution time decreases. We

observed > 95% compliance by the end of all runs (Figure 12). Highest compliance was observed at base values followed

by policy runs. However, in policy and scenario runs, compliance is < 90% for first 15 days, which is unfavorable as it

would result in penalty due to SLA non-compliance.

Figure 12. Service level compliance (fraction)

One of the benefits of process improvements is reduction in number of events and therefore potential incidents. Figure 17

shows the number of potential incidents for each run. Due to same number of resources as base run and low effort spent in

knowledge management, scenario run requires longer to resolve a ticket. This leads to a resource deficit for monitoring

(Figure 13). Percentage resource deficit is the ratio of cumulative deficit to the cumulative effort required for monitoring

over simulation period. Scenario run records the highest number of potential incidents.

Figure 13. Average resource deficit (fraction) over time

As shown in figure 14, the number of potential incidents continuously increases in scenario run. In policy run, potential

incidents increase early on but plateaus over time.

Figure 14. Number of potential incidents

Potential incidents would lead to incident management and service disruption costs. Quantification of potential incidents

into costs is not a part of this paper. Costs per incident may be estimated using organizational data and context (Rumber,

2013 and George, 2008). We define a parameter – ‘Costs of not monitoring’ to represent risk exposure if monitoring efforts

are not put in place. ‘Costs of not monitoring’ is defined as the product potential incidents and cost per incident.

Process improvement leads to reduction in effort over time. Figure 15 shows optimal resource costs for all runs. Optimal

resource costs are calculated assuming 100% resource utilization and cost per resource is assumed as 6 units / hour.

Reduction in effort leads to lower costs. Figure 16 shows effort (in person-hour) spent on resolving tickets over time. Effort

reduces post process improvement in the policy run. Owing to an additional resource, costs initially are higher in the policy

run. However, policy run cost rate decreases over time and overall costs (optimal) in the policy run are lower than base

run. Total costs are higher in policy run than base run and scenario run due to additional resource.

Figure 15. Optimal resource costs

Figure 16. Effort spent (in person-hour) in resolving tickets over time

Reduction in effort leads to lower resource utilization in policy run as compared to base and scenario run, as shown in

figure 17.

Figure 17. Resource utilization (fraction) over time.

Process improvement costs are assumed as 100 units / ticket. Total cost for process improvement is shown in figure 18.

Figure 18. Process improvement costs

5. CONCLUSION

This paper described and demonstrated the modelling and simulation of an IT operations command centre. It used system

dynamics approach to model the behavioral dynamics of a command centre. Complexity of command center asks for

modelling and understanding it in terms of feedback loops. System dynamics modeling has evolved as a result of new

modelling tools. Advancements in terms of array definition, calibration and model analysis features in system dynamics

modelling tools facilitate detailed modelling of systems. As detailed in section 3 (model description), we exploited these

features to define multiple arrays to capture variety without proliferation of parameters. We modelled sector-wise discrete

processes such as ticket response, ticket resolution, monitoring and event management aggregated with other elements and

processes through causal links and feedback loops. Based on this study we infer that investment in monitoring, process

improvement and knowledge management reduces volume of tickets, effort required per ticket and saves costs in the long

run. These policies are required to mitigate negative impact due to scenarios such as change in ticket volume, ticket

distribution, resource distribution etc. and meet SLAs. Combination of scenario analysis and policy design is instrumental

in governance of a command center engagement. This study showcases a management flight simulator for command center,

which allows a manager to interactively input scenarios and policies during simulation. This facilitates a manager to

formulate explicit and tacit policies and generate roadmaps to achieve business objectives.

6. References

Assunçao, M. D., Cavalcante, V. F., de C, G., Maira, A., Netto, M. A., Pinhanez, C. S., & de Souza, C. R. (2012).

Scheduling with pre-emption for incident management: when interrupting tasks is not such a bad idea. Scheduling with

preemption for incident management: when interrupting tasks is not such a bad idea. Winter Simulation Conference 2012:

403

Bartolini, C., Stefanelli, C., & Tortonesi, M. (2008). SYMIAN: A simulation tool for the optimization of the IT incident

management process. In Managing Large-Scale Service Deployment (pp. 83-94). Springer Berlin Heidelberg.

Beer, S. (1985). Diagnosing the System for Organizations, Wiley, Chichester.

Forrester, J. W. (1969). Urban dynamics. M.I.T. Press

George R. (2008). Estimating the cost of incidents – The incident management process. Serio IT Service desk and helpdesk

blog. http://www.seriosoft.com/Blog/?p=240.

Goo J., Kishore R., Rao H.R., & Nam K. (2009). The role of service level agreements in relational management of

information technology outsourcing: An empirical study. MIS Quarterly, 33(1), 119-145.

Information Technology Infrastructure Library (2013). http://www.itil-officialsite.com/AboutITIL/WhatisITIL.aspx. Last

accessed November 2013.

Lee, J. H., Han, Y. S., & Kim, C. H. (2007). IT Service Management Case Based Simulation Analysis & Design: Systems

Dynamics Approach. In Convergence Information Technology, 2007. International Conference on (pp. 1559-1566). IEEE.

R. Espejo and R. Harnden, ‘The Viable Systems Model – Interpretations and Applications of Stafford Beer’s VSM’, Wiley,

Chichester (1989), NY, 1976.

Rai V. K. (2012). System of Requisite Knowledge for Service Engagement Transformation. In proceedings of 9th

International Conference of Service Systems and Service Management (ICSSSM 2012).

Rai V. K. (2013). Systems Oriented Approach to Production Support- A Viable Framework. In Proceedings of 2013 IEEE

International Conference on Systems, Man and Cybernetics.

Rai V. K. and Mehta Sanjit (2011). Systems Approach to As-Is State Formation of an Engagement: A case Study

Illustration. In proceedings of 6th IEEE International Systems Conference (IEEE Syscon 2012).

Rai V. K. and Swaminathan N. (2010). Constructing Program Management Framework- A system of Systems Approach.

In proceedings of 4th IEEE International Systems Conference (IEEE Syscon 2010).

http://www.informatik.uni-trier.de/~ley/db/conf/wsc/wsc2012.html#AssuncaoCGNPS12
http://www.seriosoft.com/Blog/?p=240
http://www.itil-officialsite.com/AboutITIL/WhatisITIL.aspx

Rai V.K., Vijayasaradhi B., Subramanian K and Umamaheswari S. (2010). ODC Portfolio Management Ensuring

Sustainability in the Face of Growth Surge- A Case Study. In proceedings of 4th Annual IEEE International Systems

Conference (IEEE Syscon 2010).

Stella modelling and simulation software (2013). http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx.

Rumber J. The true cost of desktop support: Understanding the critical cost drivers of desktop support. MetricNet, LLC.

http://www.metricnet.com/. Last accessed November 2013.

Sterman, J.D., (2001). System dynamics modelling: Tool for learning in a complex world. California management review

43(4), 8–25.

Vensim (2013). http://www.vensim.com/.

http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
http://www.metricnet.com/
http://www.vensim.com/

