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ABSTRACT 
Dynamic decision making (DDM)1, is a research programme concerned with decision problems in 
dynamic environments, the variables of which evolve non-linearly over time, and fraught with 
uncertainty. Based on an interdisciplinary methodology combining a computational theoretical 
approach with an experimental design from applied cognitive psychology, the present work proposes 
objective measures of complexity for DDM. A set of seven measures relying on cognitive factors, 
information characteristics, and contextual constraints are suggested. Such objective measures of 
complexity would provide the means to (i) assess the commensurability of complex decision problems, 
and (ii) calibrate experiments in order to control the level of complexity of the scenarios. 
 
Keywords: cognitive complexity; cognitive functional size; cognitive information complexity; cognitive 
weight complexity; complex decision making; complexity measures; cyclomatic complexity; dynamic 
decision making; Halstead’s software metrics; interface complexity. 
 
INTRODUCTION 
Managing complex sociotechnical systems in various domains such as healthcare, defense and security, 
transportation and critical infrastructures, all depend on an understanding of the dynamic interrelations 
of such systems’ components, their evolution over time, and the degree of uncertainty to which decision 
makers are exposed. Beyond the necessity of understanding the problem spaces they have to deal with, 
decision makers must also prove skillful and adaptive so as to determine how to successfully influence a 
complex situation, anticipate the consequences, react to surprises, and meet durable objectives. 
Shortcomings in the comprehension of the impacts of minute interventions, or even of long term 
strategies, may lead to disastrous consequences. It is thus essential to insure that decision makers are 
made aware of the challenges inherent to dynamic decision making, through appropriate training and 
supported by adequate technologies and organisational strategies. 

Interactive learning environments (ILE) based on simulations of complex systems and framed as 
serious game can be valuable tools to facilitate performance and learning in dynamic decision making 
(Karakul & Qudrat-Ullah, 2008). Those simulations allow the compression of time and space in which 
complex decision problems unfold, and thus provide an opportunity for participants to learn about the 
intrinsic dynamic properties of complex systems from both a piecemeal and a holist points of view, by 
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1!Also!known!as!complex!decision!making!(CDM).!



feedback on common non-adaptive heuristics provided throughout a simulation run. The breadth and 
depth of feedback from such simulated environments may support a metacognitive function, i.e., support 
thinking about one’s own decisions, and thus provide solid foundations for the development of systems 
thinking, i.e., understanding how variables interrelate when dealing with complex systems (Vester, 
2007). 
 
Objectives 
The Complex Decision Making Experimental Platform (CODEM) is a simulator and testbed used to 
study the impact of ILEs on the comprehension of individuals involved in complex decisions problems. 
More precisely, CODEM aims to study the requirements for cognitive support, viz. to adequately 
characterize what makes complexity so difficult to tackle, as well as learning to avoid non-adaptive 
behaviours which lead to dire consequences. This research involves human-in-the-loop experimentation 
on the CODEM simulation environment in order to systematically manipulate the variables and other 
attributes of “gamified” scenarios representing complex decision problems. The results of the CODEM 
project will provide substantial quantitative data to produce a model of the cognitive and behavioural 
determinants of the successes and failures of decision makers in complex and dynamic environments. 

This paper focuses on a particular characteristic of the study of the comprehension of dynamic 
decision making, namely the development of an objective measure of complexity, based on an 
interdisciplinary methodology combining a computational theoretical approach and a design from 
applied cognitive psychology. This objective measure of complexity would provide the means to (i) 
assess the psychological commensurability of complex decision problems in DDM simulations, and (ii) 
calibrate future DDM experiments in order to establish a progressive scale of scenario difficulty. 
 
Problem 
Making decisions in complex situations depends on a great number of factors, but the principal 
characteristics of what makes decisions complex are generally framed as follows. Decision problems 
and decision environments, understood as complex systems, exhibit: 

! uncertainty, in terms of information opacity or completeness, influencing and limiting the 
decision maker in its choices and in its comprehension of the system it is attempting to influence; 

! non-linearities and delays in the relationships between parameters and variables, impairing the 
understanding of complex systems, ; 

! variability/evolution over time, i.e., the dynamics of a system make it so that its parameters and 
variables may change states over time, both independently and as a result of human intervention.  

 
To tackle the numerous issues related to the comprehension and control of complex, dynamic 

systems, our experimental testbed must represent all such features in a well-parameterized design and 
produce robust measures yielding some insights into participants’ situational awareness and 
performance in attempting to stabilize a complex decision problem space. The CODEM project focuses 
on performance measures (goal attainment metric based on goal distance), as well as anticipation 
measures (difficulty measure based on prediction of future system states), for decision makers in 
simulated scenarios representing complex decision problems. It uses operationalized factors used as 
independent variables for quantitative analyses, such as the adoption or avoidance of behaviours 
assessed to be non-adaptive for decision problems from a systems thinking perspective (Dörner, 1989, 
Sterman, 1989, Funke, 1995, Bakken, 2008, Gonzalez, 2012). This paper presents a methodology, as 
well as some preliminary results, to support the analysis of human performance in dynamic decision 
making, and provide some insights in the issue of the comprehension of complex systems, by means of 
objective metrics and models of complexity. A formal and operationalized concept of complexity for 



dynamic decision problems in psychology could potentially be generalizable to other areas of research in 
the cognitive and behavioural sciences. 
 
METHODOLOGY 
The complexity of a decision problem, with regards to the cognitive factors, is not the focal point of 
research from the point of view of the numerous theories and models of complexity (Diehl & Sterman, 
1995, Bar-Yam, 1997, Kinsner, 2010). According to Bar-Yam (1997), “loosely speaking, the complexity 
of a system is the amount of information needed in order to describe it. The complexity depends on the 
level of detail required in the description.” 

A literature review of the various models and measures of complexity suggests that algorithmic 
computational complexity, as well as structural systemic complexity, are more appropriate for this type 
of problems, given that they are sensitive to information about both quantities of information, as well as 
the interrelatedness of components (Sipser, 1996, Kinsner, 2010). 
 
Complexity Metrics 
Seven measures have been retained to assess their relevance and their efficacy in the context of 
behavioural and cognitive science research, following on the positive empirical results of a number of 
researchers with regards to the possibility and practicality of deploying objective measures of 
complexity in various domains (De Silva & Kodagoda, 2013, De Silva, Kodagoda, & Perera, 2012, De 
Silva, Weerawarna, Kuruppu., Ellepola, & Kodagoda, 2013, Kinsner, 2010). Those objective measures 
of complexity are presented summarily below. Table 1 presents a synthesized view of the features and 
means of computation for the various models of complexity. 
 
Cyclomatic Complexity (CC) McCabe’s Cyclomatic Complexity (1976), is a measure inspired by 
algorithmic graph theory, which determines the number of independent paths in a control flow graph. It 
is computed as a simple subtraction of the number of graph nodes from graph edges, plus the number of 
connected components. 
 
Halstead’s Software Metrics (HM) We use a modified version of Halstead’s Software Metrics (1977), 
an implementation-independent complexity measure of algorithms. Halstead's metric depends on the 
number of unique and total operators and operands, and is thus a measure of algorithmic size, a strictly 
informational measure of complexity. 
 
Interface Complexity (IC) Cardoso’s Interface Complexity (Cardoso et al, 2006), adapted from Henry 
and Kafura’s Information Flow (1981), determines the total complexity of an algorithm as the product of 
structural complexity and information flow, i.e., inputs and outputs. 
 
Cognitive Functional Size (CFS) Wang’s Cognitive Functional Size (Shao and Wang, 2003) computes 
the complexity of an algorithm as a function of the product of summed inputs and outputs by the “total 
cognitive weight”, this latter construct being itself an additive function of  “basic control structures” 
which bear various cognitive weights determined via empirical studies. 
 
Cognitive Weight Complexity Measure CWCM) Misra’s Cognitive Weight Complexity Measure 
(2006), based on Wang’s CFS, is a metric considering exclusively the total of cognitive weights, as a 
function of executed instructions in an algorithm. 
 



Cognitive Information Complexity Measure (CICM) Kushwaha and Misra’s Cognitive Information 
Complexity Measure (2006), also based on Wang’s CFS, is a metric combining a weighted information 
score multiplied by the total cognitive weight. 
 
Cognitive Complexity (CcS) Wang’s Cognitive Complexity (Wang, 2007, 2009) is a more objective 
and rigorous measure of a system’s complexity and size, because it represents its real semantic 
complexity (as opposed to mere symbolic quantification) by integrating both the operational complexity 
and the architectural complexity of a system in a coherent measure. 
 

The foundational work of Wang (Shao & Wang, 2003, Wang, 2007, 2009, Wang, Kinsner, Anderson, 
et al, 2009) in the innovative domain of cognitive informatics provides some insights into more rigorous 
measures of complexity that include a cognitive component. By including cognitive weights in 
complexity measures, Wang et al. model the additional semantic properties of the comprehension of 
complex systems, beyond mere structure and information flow. Cognitive complexity is measured as the 
product of architectural complexity and operational complexity, where architecture refers to structural 
factors and operations refer to operator-system interactions (Wang, 2007, 2009). 

These objective measures of complexity are tested against human behavioural data obtained through 
CODEM experimentations. The objective is to evaluate if these measures can account for human 
behaviour, comprehension and performance in scenarios of varied complexity. 
 
Table 1. Characterization of the seven objective measures of complexity based on features included and 

type of calculation. 
 

 
Models2 

 

 
Features 

 
Calculation 

  
Structure 

 

 
Information 

 
Cognition 

 
Absolute 

 
Relative 

(weighted) 
 

 
Relative 
(scaled) 

CC ✔ ︎   ✔   
HM  ✔  ✔   

CWCM   ✔  ✔  
IC ✔ ✔  ✔   

CFS ✔ ✔ ✔ ✔ ✔  
CICM ✔ ✔ ✔ ✔ ✔  

CcS ✔ ✔ ✔ ✔ ✔ ✔ 
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2!CC:!Cyclomatic!Complexity;!HM:!Halstead’s!Software!Metrics,!CWCM:!Cognitive!Weight!Complexity!
Measure;!IC:!Interface!Complexity;!CFS:!Cognitive!Functional!Size;!CICM:!Cognitive!Information!
Complexity!Measure;!CcS:!Cognitive!Complexity.!



Apparatus 
The results from previous CODEM experiments were used (Lafond, DuCharme, Gagnon, & Tremblay, 
2012). This includes three scenarios, two of which were implemented in CODEM itself, SpaceLab and 
COIN (counterinsurgency), as well as a scenario named Cybernetia simulated in the Ecopolicy tm serious 
game (MCB Publishing House). The scenarios are contextualized implementations of dynamic decision 
making problems, where a participant may observe and influence the changes in variable values of key 
parameters in a complex system. Some of the variables must be minimized or maximized, or attain a 
particular threshold value, in order to achieve success (or merely avoid catastrophic failure). CODEM 
and Ecopolicy are turn-based computer simulations, and require that participants expend some “action 
points” in order to effect some changes in the system variables. 

The CODEM scenarios (SpaceLab, COIN) involved 60 participants on a repeated measures design, 
whilst the Cybernetia scenario in Ecopolicy measured the performances of 30 participants, assigned to 
two experimental conditions (the second condition of which has been excluded for the purposes of this 
analysis). 

The performance measures for all three scenarios, in terms of goal attainment following a 
computation of the goal distance between initial values and values which warrant the successful 
completion of a scenario, were weighted over the number of turns required to complete a given scenario, 
as the three scenarios did not share identical characteristics in order to establish comparable scores. 
Since the performance measurements of different scenarios may not warrant comparable values, given 
the arbitrary semantics of success or failure relative to the various variables states, their number, 
relationships, and the types of interventions available to influence the system, another dependent 
variable was included in the meta-analysis. 

This variable is a set of scores for predictions of future system states, weighted and normalized in 
relation to actual future system states. This variable, the anticipation measure, is calculated through a 
proportion of variance accounted for  (PVAF), or coefficient of determination, by comparing predictions 
and actual future system states, for four “turns” of the scenario simulations. It is expected that using 
such standardized scores may yield more objectively accurate measures of scenario difficulty, permitting 
comparisons of results for the different scenarios. The measures of complexity used herein may not be 
sensitive enough, or even capture at all, considerations of scenario difficulty, and additional features of 
DDM may be required in order to faithfully represent the complexity of complex decision making (see 
the discussion section below for further elaboration on this topic). 

The following section presents the performance and the anticipation scores as measured against the 
seven objective measures of complexity described in the methodology section above. 
 
RESULTS 
Two types of statistical measures and two types of information visualization techniques were used to 
examine relationships between performance and prediction scores on the one hand, and objective 
measures of complexity on the other hand, as well as between the objective measures of complexity in 
relation to one another: 
 

! associative tests, in the form of both the Pearson product-moment correlation coefficient (r), and 
Spearman's rank correlation coefficient (ρ) 

! goodness of fit tests, in the form of coefficients of determination (R2), 
! a subset of the scatterplot charts for the three scenario performance and prediction scores 

according to the objective measures of complexity, 
! a parallel coordinates chart to compare the objective measures of complexity between 

themselves. 



Tables 2 and 3 below present the linear dependence results and the associated goodness of fit 
measures for the seven objective measures of complexity, with scenario performance and scenario 
prediction scores as dependent variables. For scenario performances, the best scores for linear 
dependence and goodness of fit are accounted for by the Interface Complexity model (r = -.468, R2 = 
.219, and adjusted R2 = .213), Halstead’s Software Metrics (r = -.462, R2 = .214, and adjusted R2 = .208), 
and the Cognitive Functional Size model (r = -.448, R2 = .201, and adjusted R2 = .195), respectively. 
Variance in performance is thus well accounted for by the objective models of complexity, as they all 
range between 15.8% and 21.3%. 

For scenario anticipation, linear dependence and goodness of fit in prediction scores are again better 
for the Interface Complexity model (r = -.407, R2 = .166, and adjusted R2 = .159), but in a tie with 
Halstead’s Software Metrics (identical score), closely followed by the Cognitive Functional Size model 
(r = -.406, R2 = .165, and an adjusted R2 = .159, which ties with the above-enumerated adjusted R2), 
respectively. Again, variance in anticipation is reasonably accounted for by the measures of scenario 
complexity, ranging between 15.1% and 15.9%. 

The Spearman rank correlation coefficients, or Spearman’s rho, tell a different story for both 
performance and anticipation scores. The values are ordered in a dichotomous fashion, with one model 
standing out – the Interface Complexity model, at ρ = -.444 for performance and ρ = -.328 for 
anticipation, whilst all other models fall behind at the same scores of ρ = -.403 and ρ = -.323 for 
performance and anticipation, respectively. This might indicate that while the IC model is more sensitive 
to the differences in the dependent variables, the overall majority of the objective models of complexity 
are indiscriminate in their ability to predict variance in the target variables. A simple explanation would 
be that the models of complexity are highly dependent between themselves, as they all inherit a number 
of features from their chronological predecessors, such as McCabe’s model (for all models except HM 
and the CWCM), and the CFS (for CWCM, CICM, and CcS), thereby falling all along the same rank 
order for correlational purposes. 

The four scatterplots that follow (Figures 1 to 4) present a subset of those performance and 
anticipation scores for the three scenarios, according to the lowest and the highest fit with the objective 
measures of complexity (the CWCM model and the IC model, respectively). There is a clear reversal of 
trend in the relationship between the complexity measures and the participants’ performances and 
predictions, for two of the objective measures of complexity, which can be observed in Figures 3 and 4 
for the Interface Complexity model, and also occurs in the case of Halstead’s Metrics measure. The 
correlation scores and associated Figures suggest that for those two models of complexity, the 
differences in complexity for SpaceLab and Ecopolicy are much smaller than for the other five objective 
measures of complexity. 

Finally, a parallel coordinates chart (Figure 5) was computed in order to represent the linear trends 
(or lack thereof) for the seven objective measures of complexity over the different scenarios. This 
information visualization technique relates the scales of the objective measures of complexity on the 
vertical axes, to represent linear trends and other relationships in a multidimensional space. The 
aforementioned divergences in linear trend between the Halstead’s Metrics model and the Interface 
Complexity model, on the one hand, and the other five models of complexity, on the other hand, is 
evident in the parallel coordinates chart, but only for the Ecopolicy scenario. 
 
 
 
 
 
 



 
 
 
 
 
 

Table 2. Monotonic and linear dependence, goodness of fit between scenario performances and 
objective measures of complexity3. 

 
 Spearman’s rho Pearson’s r r2 adjusted r2 

CC -.403 -.427 .182 .176 
HM -.403 -.462 .214 .208 
CWCM -.403 -.402 .161 .155 
IC -.444 -.468 .219 .213 
CFS -.403 -.448 .201 .195 
CICM -.403 -.437 .191 .184 
CcS -.403 -.405 .164 .158 
 
 
 
Table 3. Monotonic and linear dependence, goodness of fit between anticipation measures and objective 

measures of complexity4. 
 
 Spearman’s rho Pearson’s r r2 adjusted r2 

CC -.323 -.403 .162 .156 
HM -.323 -.407 .166 .159 
CWCM -.323 -.396 .157 .151 
IC -.328 -.407 .166 .159 
CFS -.323 -.406 .165 .159 
CICM -.323 -.404 .164 .157 
CcS -.323 -.397 .158 .151 
 
 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!All!Spearman’s!ρ!and!Pearson’s!r!values!are!significant!at!the!0.01!level,!1Nand!2Ntailed.!

4!All!Spearmans’!ρ!and!Pearson’s!r!values!are!significant!at!the!0.01!level,!1Nand!2Ntailed.!



 
 

Figure 1. Scenario performances according to the Cognitive Weight Complexity Measure. 
 

 
 

Figure 2. Prediction scores according to the Cognitive Weight Complexity Measure. 
 



 
 

Figure 3. Scenario performances according to the Interface Complexity measure. 
 

 
 

Figure 4. Prediction scores according to the Interface Complexity measure. 
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Figure 5. Parallel coordinates chart for seven objective measures of complexity across scenarios. The vertical axis represents relative 
(standardized) values for each measure of complexity. 



DISCUSSION 
The seven objective measures of complexity adapted for DDM problems have yielded significant 
results with regards to their explained variance on performance and anticipation measures which, 
while within reasonably close scores from one to another, are consistently highest for the 
measures most sensitive to the information flow and cognitive weights. The following sections 
summarize our findings and interpretations, known limitations, and future research ideas. 
 
Dependence and Goodness of Fit 
The results used in the present paper are part of a meta-analysis computed retroactively on data 
from dynamic decision making studies involving interactive learning environments (CODEM, 
Ecopolicy). While the number of participants was sufficient to explore linear dependencies and 
goodness of fit for objective measures of complexity between themselves and with human 
performance in various DDM scenarios, additional data is required to validate any claim to the 
linear dependence between such models of complexity and performance in DDM. 

The current study used three different scenarios of varying complexity and human 
performance scores, and the results are so far counterintuitive with regards to some of the 
findings from De Silva et al (De Silva & Kodagoda, 2013, De Silva, Kodagoda, & Perera, 2012, 
De Silva, Weerawarna, Kuruppu, Ellepola, & Kodagoda, 2013) and from Wang (Shao & Wang, 
2003, Wang, 2007, 2009). As can be observed from Table 1, the highest correlation and 
regression scores between an objective measure of complexity and human performance in the 
three scenarios come from the Interface Complexity model, Halstead’s Software Metrics, and the 
Cognitive Functional Size model, respectively. The caveat is that both IC and HM are the 
complexity measures that are also the two with the least linear dependence with other objective 
measures of complexity (Figure 5). 

De Silva et al (De Silva, Kodagoda, & Perera, 2012, De Silva, Weerawarna, Kuruppu, 
Ellepola, & Kodagoda, 2013) had very high correlation scores (using Spearman's rank 
correlation coefficient) for monotonic dependence between subjective measures of complexity 
and objective models such as Shao and Wang’s Cognitive Functional Size (.863 and .903 in the 
2012 and 2013 articles, respectively), and McCabe’s Cyclomatic Complexity (.752 in the 2012 
article), with lower Spearman’s rho values for the CICM and CWCM measures. We conjecture 
that this could be explained by one or more of the three following factors: 

! subjective measures of complexity may yield higher linear dependence with objective 
measures of complexity than performance data in a complex decision problem, 

! the assessment of the complexity of algorithms may be incommensurable with, or 
substantially different from, the assessment of dynamic decision problems (including 
different sensitivities to the various structural, informational, and cognitive features 
elicited in the measures of complexity), 

! the information contained in the human performance data, and/or the information about 
the intrinsic properties of the three DDM scenarios themselves, is not heterogeneous 
enough to yield higher discrepancies in correlation and regression values, compared to 
the ten algorithms used in De Silva et al’s three papers, for which the subjective and 
objective measures of complexity were analyzed. 

The discrepancies between Pearson product-moment correlation coefficients and Spearman 
rank correlation coefficients in our results may be attributable to violations to the ideal 
conditions for linear correlation. While the Pearson r values are higher and diverse, suggesting 



higher model sensitivity and higher dependence, a number of essential assumptions to the 
robustness of Pearson’s correlation undermine the accuracy of our data. Firstly, there are a few 
outliers in the Ecopolicy dataset, but the n is already pretty low, given our restriction to the 
conditions of this experiment that we have opted to compare with the CODEM scenarios, so we 
did not remove those outliers for the sake of consistency. Secondly, the performance and 
anticipation scores are skewed in distribution. The presence of outliers and skewed variables 
sometimes favors higher Pearson correlation scores than is warranted. In future analyses, a 
nonlinear modeling approach will be explored, by analyzing DDM data via the proposed general 
monotone model (GeMM) of Dougherty and Thomas, (2012) which is more appropriate for 
monotonic and nonlinear relationships. 
 
Feature-Dependent Metrics of Complexity 
The seven measures of complexity used in this paper span models and theories of complexity 
pertaining to structural, informational, and cognitive features of complex systems. Some do in a 
concatenative fashion, i.e., by conservative extension to another metric, such as Cardoso’s 
Interface Complexity which adds information flow to a structural component akin to McCabe’s 
Cyclomatic Complexity, while Misra’s Cognitive Weight Complexity Measure and Kushwaha 
and Misra’s Cognitive Information Complexity Measure both amend Shao and Wang’s 
Cognitive Functional Size metric. 

The selective or concatenative emphasis on structural, informational, and/or cognitive factors 
may be preponderant in certain domains of complexity theory, such as algorithmic complexity 
theory and software engineering, as studied by De Silva et al (De Silva & Kodagoda, 2013, De 
Silva, Kodagoda, & Perera, 2012, De Silva, Weerawarna, Kuruppu, Ellepola, & Kodagoda, 
2013). Those researchers had a very clear focus in mind: the effectiveness and practicality of 
adapting such measures of complexity to software engineering best practices. Our focus is both 
fundamental and experimental: which of the objective complexity measures, amongst the myriad 
available, can leverage our understanding of complex/dynamic decision problems? Further 
experimentation may reveal fundamental trends or specific requirements of complexity modeling 
for behavioural and cognitive science research endeavours. 
 
Sensitivity to Absolute and Weighted Features 
The structural, informational, and cognitive factors involved in the above mentioned objective 
measures of complexity are not only selective in what they measure, they also adopt significantly 
different scales and calculations for the same or similar factors. Wang’s Cognitive Complexity, 
for instance, modifies the calculations of the Cognitive Functional Size so as to weight the 
informational component of complexity with a ceiling value (3 inputs or more is treated as a 
value of 3, similarly for outputs), while Kushwaha and Misra’s Cognitive Information 
Complexity Measure weights the informational component as a ratio of the sum of operators and 
operands to the quantified symbolic information (effective lines of code, eLOC). Similarly, what 
counts as structural complexity may be an absolute value as in the case of McCabe’s Cyclomatic 
Complexity and Cardoso’s Interface Complexity, or a weighted feature directly included in the 
cognitive component of complexity, such as is the case for the CFS, CWCM, and CICM metrics. 
Further, it may be that the relative contribution and weight of a feature ends up being revised on 
empirical grounds, such as the cognitive component of complexity in Wang’s Cognitive 
Complexity, renamed the operational complexity (Wang, 2007, 2009). 



Based on the observations gathered in the results section, one quirk of such computational and 
empirical choices is that it may be entirely possible that objective measures of complexity do not 
model the same scenarios in a linearly dependent trend. That is, for a given dynamic decision 
problem, a number of the measures of complexity depart from their linear trend because the 
weight of a given feature in one objective measure or another looms larger than the average. For 
example, Halstead’s Metrics and the Interface Complexity model clearly diverge from the linear 
trend of other measures in the case of the Ecopolicy scenario in the parallel coordinates charts 
(Figure 5). This is because HM and IC are very sensitive to the informational component of 
complexity. HM computes the sum total of operators and operands, including inputs and outputs, 
while IC uses an absolute computation of the squared sum of inputs and outputs, both of which 
are very low in the Ecopolicy scenario, relative to the CODEM scenarios. 
 
 
Known Limitations 
A number of constraints affect the current formulation of the objective models of complexity, 
based on arbitrary choices in the experimental design, on computational capabilities and means, 
as well as on some fundamental principles intrinsic to the models used. 

The first issue is that of static versus dynamic measures of complexity. This imposes a 
constraint to our modeling endeavour pertaining to a difference between structural and execution 
semantics in the description of a complex system. Our objective measures of complexity do not 
capture variability in inputs and outputs for every turn of a simulated scenario execution, nor do 
they capture the number of interventions used. The number of functional, i.e., relevant, parts in a 
complex system varies over time (Brehmer & Allard, 1991), and the intrinsic dynamics of a 
system may impact its own complexity (Kerstholt & Raaijmakers, 1997). The models of 
complexity focus only on the initial conditions of a DDM scenario, i.e., they capture a snapshot 
of the initial range of possible inputs and outputs, as well as the maximum number of possible 
interventions that can be effected over the system. A possible venue to capture the execution 
semantics would be to apply a dynamic complexity measure which computes structural 
complexity features across a number of dimensions and over time, such as the variance fractal 
dimension trajectory (Kinsner, 1994). 

Secondly, the measures of complexity used herein are parameterized and implemented 
differently than their algorithmic and structural models of origin, because there exists both 
intrinsic and practical differences between algorithms and decision problems. The scenarios in 
eCODEM are built around constructs such as variables, actions, influences between variables, 
action points and output functions as information flow, etc., and the operationalization of the 
objective models of complexity require some extensive tweaks in repurposing and adapting their 
metrics to a substantially different domain. For some complexity metrics, absolute measures are 
used in total or for subcomponents, while in other measures, weighted scores are used. Only one 
objective model of complexity, i.e., Wang’s Cognitive Complexity (2007, 2009) addresses this 
issue in a way that translates well from algorithmic complexity analysis to decision analysis. 
Wang proposes the concept of relational complexity, Cr(S), as the maximum potential or the 
upper limit of the operational complexity of a given system, with the symbolic complexity being 
its lower boundary. With well-formulated and operationalized concepts for symbolic, 
architectural, operational, cognitive, and relational complexities, the translation of dynamic 
decision making problems into effectively computable complex systems is made possible. 



Finally, as mentioned in the methodology section, the objective measures of complexity used 
in this research may not sensitive to scenario difficulty, viz. the goal distance between the 
system’s initial variable states and a system’s set of variable states that represents the successful 
completion of a DDM scenario. Indeed, the features of a complex system, such as structural 
intricacies or information flow volume, neither translate directly, nor in isolation from one 
another, into some measure of cognitive demand on a decision maker (Gonzalez, Vanyukov, & 
Martin, 2005). A complex system with twice as many interrelated components is not twice as 
difficult to understand or influence (Funke, 1988).  Gonzalez et al (2005) also note that “decision 
makers may be able to achieve the goals of some DDM systems by considering only a subset of 
system variables”. This is consistent with Mackinnon and Wearing’s (1980, also mentioned in 
Karakul & Qudrat-Ullah, 2008) finding that interactions between subsystems in DDM facilitate 
overall performance. In order to insure that a complex system does not yield to such narrower 
strategies, we must increase the interrelatedness of components so as to eliminate such 
subsystems. As the authors note, “in such tightly coupled systems, complexity remains relatively 
constant because each dynamic decision requires consideration of most or all system variables”. 
Future models of complexity will factor an objective measure of difficulty, in terms of goal-
distance of initial decision space values from values warranting a successful scenario, and this 
will be accomplished in a twofold methodology: firstly, an objective measure of difficulty will 
be used as a an independent predictor of dependent measures, and secondly, all seven objective 
models of complexity described herein will incorporate a component score factoring the same 
computation for difficulty, in order to observe whether difficulty measures are a viable feature 
for complexity analysis in dynamic decision making research on their own, or compounded with 
other factors of complexity (structure, information flow, cognitive weights). 
 
Way Ahead 
Additional performance data points are required to assess how robust are the scores for the linear 
dependence and goodness of fit of the seven objective measures of complexity used in this meta-
analysis. Future experimentation will include additional dependent variables besides overall 
scenario performance and anticipation scores, including subjective measures of complexity, 
confidence measures, and performance measures on working memory and fluid intelligence (n-
back test). The scenarios in CODEM will involve participants with and without training in 
systems thinking, as well as the introduction of a cognitive tutor to provide feedback on non-
adaptive heuristics use. New scenarios will be used, including a different simulation platform 
(Democracy 2 tm) to cross-validate the findings from the CODEM platform. 

There is a possibility that the effect of complexity and difficulty on DDM performance falls 
along a just-noticeable difference threshold as formulated by the Weber–Fechner law5.  This 
would amount to a better fit if the relationship between increasing levels of complexity in 
decision space, on the one hand, and overall performance and/or perceived difficulty on the other 
hand, were modeled according to a nonlinear statistical model. Future experimentation and 
analyzes will take into account this differential limen to test whether DDM performance and/or 
difficulty do in fact follow a logarithmic scale. 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!Reber,!A.!S.!(1985)!The$Penguin$dictionary$of$psychology.!London:!Penguin!Books. 
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